top of page

Type of Hearing Enhancement Systems

Audio Induction Loop Systems

​

Audio Induction Loop Systems use electromagnetic energy to transmit sound. A hearing loop system involves four parts:

​

• A sound source (e.g. public address system, microphone, home TV or telephone)

• An amplifier

• A thin loop of wire that encircles a room or branches out beneath carpeting

• A receiver worn in the ears or as a headset

 

Amplified sound travels through the loop and creates an electromagnetic field that is picked up directly by a hearing loop receiver or a telecoil, a miniature wireless receiver that is built into many hearing aids and cochlear implants. To pick up the signal, a listener must be wearing the receiver and be within or near the loop. Because the sound is picked up directly by the receiver, the sound is much clearer, without as much of the competing background noise associated with many listening environments. Some loop systems are portable, making it possible for people with hearing loss to improve their listening environments, as needed, as they proceed with their daily activities. A hearing loop can be connected to a public address system, a television, or any other audio source. For those who don’t have hearing aids with embedded telecoils, portable loop receivers are also available.

Digital FM Solution

​

Digital FM Solutions use radio signals to transmit amplified sounds. They are often used in classrooms, where the instructor wears a small microphone connected to a transmitter and the student wears the receiver, which is tuned to a specific frequency, or channel. People who have a telecoil inside their hearing aid or cochlear implant may also wear a wire around the neck (called a neckloop) or behind their aid or implant (called a silhouette inductor) to convert the signal into magnetic signals that can be picked up directly by the telecoil. FM systems can transmit signals up to 300 feet and are able to be used in many public places. However, because radio signals are able to penetrate walls, listeners in one room may need to listen to a different channel than those in another room to avoid receiving mixed signals. Personal FM systems operate in the same way as larger scale systems and can be used to help people with hearing loss to follow one-on-one conversations.

Infra-Red Solution

​

Infra-Red Solutions use infrared light to transmit sound. A transmitter converts sound into a light signal and beams it to a receiver that is worn by a listener. The receiver decodes the infrared signal back to sound. As with FM systems, people whose hearing aids or cochlear implants have a telecoil may also wear a neckloop or silhouette inductor to convert the infrared signal into a magnetic signal, which can be picked up through their telecoil. Unlike induction loop or FM systems, the infrared signal cannot pass through walls, making it particularly useful in courtrooms, where confidential information is often discussed, and in buildings where competing signals can be a problem, such as classrooms or movie theaters. However, infrared systems cannot be used in environments with too many competing light sources, such as outdoors or in strongly lit rooms.

bottom of page